

Production of e⁺e⁻ in U+U and Au+Au as Measured by STAR

Joey Butterworth (for the STAR Collaboration)
Rice University
September 24th, 2016

Outline

- ♦ Using e⁺e⁻ to probe the medium
- ♦ Vector meson modification in the medium & lifetime measurement of the medium
- \Leftrightarrow Measurements in U+U $@\sqrt{s_{NN}} = 193 \text{ GeV}$
- Measurements in RHIC Beam Energy Scan
- ♦ Outlook

Summary

EM Probes

♦ Excellent Probe

- ♦ Minimal final state interactions
- ♦ Generated at all stages of the collision

⋄ Chronological Phases [Early to Latest]

- ♦ High Mass Region [HMR]
 - ♦ Drell-Yan
 - ϕ J/ ψ + Υ Suppression
- ♦ Intermediate Mass Region [IMR]
 - Heavy flavor modification
 - ♦ QGP (thermal) radiation
- ♦ Low Mass Region [LMR]
 - ♦ Vector meson modification
 - Possible link to chiral symmetry restoration

LMR: Spectral Functions

- Spectral functions modified in the medium
 - ♦ Successful description of data @ SPS & RHIC energies
- Possible link to chiral symmetry restoration
 - ♦ Spectral Functions + QCD Sum Rules + Weinberg Sum Rules + IQCD

Lifetimes

- ♦ Lifetime of the fireball
 - ♦ Proportional to 'excess' in LMR

- ♦ 'Excess' Au+Au data
 - ♦ Greater at more central collisions
 - ♦ In agreement with model lifetime trends

Experimental Controls

♦ From RHIC to SPS

- ♦ Beam Energy Scan Program: 7.7 62.4 GeV
 - ♦ Ties RHIC to SPS
 - ♦ Sufficient data [Au+Au @ $\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 GeV]
 - \diamond Change $\sqrt{s_{NN}}$, maintain colliding species & total baryon density
- ♦ Systematically study the LMR excess yield
 - \diamond As a function of $\sqrt{s_{NN}}$
 - ♦ Versus fireball lifetime

- Higher energy densities + number of participants
 - \diamond Au+Au \rightarrow U+U @ $\sqrt{s_{NN}}$ = 193 GeV
 - \$ Energy density expected to be up to 20% higher than Au+Au $@\sqrt{s_{NN}} = 200 \text{ GeV}$
 - ♦ Longer fireball lifetime?
 - ♦ Higher excess yield in the LMR?

Data

Species	$\sqrt{s_{NN}}$ [GeV]	Events (M)
Au+Au	200	730 (min. bias)
		+ 220 (central)
Au+Au	62.4	67
Au+Au	39	130
Au+Au	19.6	36
Au+Au	27	70
U+U	193	270

- ♦ Time Projection Chamber (TPC) and Time of Flight (TOF)
- \Leftrightarrow Large acceptance ($p_T^e > 0.2 \text{ GeVc}^{-1}$, $|\eta^e| < 1$, & $|Y_{ee}| < 1$)

Electron Identification

$$Au+Au @ \sqrt{s_{NN}} = 62 \text{ GeV}$$

- ♦ Uses the TOF's precise timing
 - ♦ Remove slower hadrons
 - ♦ Extends and improves the TPC's PID reach

- High-purity detection of electrons
 - ♦ Integrated purity > 95%

Minimum-Bias Yields

Different collision systems

♦ In good agreement with model(s) that incorporates p spectral function broadening

Rapp: Adv. High Energy Phys. 148253 2013 PHSD: O. Linnyk et al., PRC 85 024910 2012

S. Yang, Quark Matter 2015 R. Rapp: Adv. High Energy Phys. 148253 2013

p_T Dependence: U+U

- ♦ 20% higher energy density compared with Au+Au
- \diamond Model, which incorporates the broadening of the ρ spectral function, is consistently in agreement in the LMR as a function of p_T

Centrality Dependence: U+U

- ♦ 20% higher energy density compared with Au+Au
- * Model, which incorporates the broadening of the ρ spectral function, is consistently in agreement in the LMR as a function of centrality

Normalized Excess Yield Acceptance-Corrected

- \Leftrightarrow Different initial conditions by changing energy density (species + $\sqrt{s_{NN}}$)
- In good agreement with a model that incorporates a broadened ρ spectral function

AuAu@19.6,200: STAR, PLB750 64 2015 AuAu@27,39,62&UU@193: S. Yang, QM15 InIn@17.3: NA60, EPJ C59 607 2009 Theory: R. Rapp PRC63 054907 2001 + priv. comm.

Lifetimes

- ♦ **Model**: Normalized integrated excess yield in the LMR is proportional to the lifetime of the system for $\sqrt{s_{NN}} = 17.3 200$ GeV
- ♦ Increase of yields
 - At higher energies with respect to lower energies
 - At central collisions compared to peripheral collisions
- Measurements are consistent
 with model calculations that
 report longer lifetimes for more
 central collisions

AuAu@19,200: STAR, PLB750 64 2015 AuAu@27,39,62 & UU@193: S. Yang, QM15 InIn@17.3: NA60, EPJ C59 607 2009 Lifetimes: R. Rapp, H. van Hees, PLB753 586 2016

Future e⁺e⁻ Studies

- ♦ BES-I investigated LMR emission & proportional to lifetime (w/ constant total baryon density)
- * BES-II continue to probe LMR and investigate the lifetime and ρ spectral function dependence on total baryon density
 - ♦ If near critical point, possible increase in excess yields compared to the expected excess yield
- ♦ BES-II may allow for meaningful measurements of IMR
- \diamond Overlaps & spans $\sqrt{s_{NN}}$ that connects many experiments

Ruan, Rapp – TPD'14

Future e⁺e⁻ Studies (cont.)

 Au+Au @ $\sqrt{s_{NN}}$ [GeV]
 7.7
 9.1
 11.5
 14.5
 19.6

 Events (M)
 100
 160
 230
 300
 400

Similar stat. uncert. as Au+Au @ $\sqrt{s_{NN}}$ = 200 GeV

- ♦ Reduction in statistical uncertainties
 - Quantity + acceptance increase
- Reduction in systematic uncertainties
 - ♦ Cocktail + purity improvement

- end-cap Time Of Flight
 - ♦ Matches the reach of iTPC
 - ♦ Measure rapidity dependence → study total baryon density dependence

Summary

- ♦ STAR has an established LMR e⁺e⁻ program measuring the invariant mass
 - \diamond Measurements as a function of $\sqrt{s_{NN}}$
 - \diamond Measurements as a function of p_T
 - Measurements as a function of centrality
 - Measurements as a function of collision species
- Our measurements agree with models, which include a broadened ρ spectral function
 - \diamond Measurements are consistent with a model that indicates a longer medium lifetime for collisions that are more central and have a higher $\sqrt{s_{NN}}$

Outlook

- ♦ BES-II offers an opportunity to build and extend the current program
- ♦ Continue to study the relationship between excess yields and fireball lifetimes
- ♦ Statistics may allow for IMR measurements

Thank you

Backup